








 iii

Table of Contents 
 
List of Figures ................................................................................................................................ iv 
 
Preface............................................................................................................................................. v 
 
Executive Summary ....................................................................................................................... vi 
 
Introduction..................................................................................................................................... 1 
 
Developing a Prototype for a “Perceptual Editor”.......................................................................... 1 
 
Exploring Perceptual “Inferences” ................................................................................................. 8 

 
An Instance-Based Perception of Distance................................................................................. 9 
 
Toward an Instance-Based Model of Signal Detection ............................................................ 11 
 
Using ACT-R as a Perceptual Inference Engine....................................................................... 13 

 
Recommendations and Conclusions ............................................................................................. 15 
 
References..................................................................................................................................... 18 



 iv

List of Figures 

 
Figure 1.  The Top-Level User Interface for the Perceptual Editor................................................ 3 
 
Figure 2.  An Interface for Defining Ground Truth Variables (as they might be exported from the 
IWARS) .......................................................................................................................................... 4 
 
Figure 3.  An Interface for Defining “Perceived” Variables (i.e., the results of the perceptual 
transformations that are mapped back onto variables within the IWARS) .................................... 4 
 
Figure 4.  An Interface for Associating Mappings to an Inference Engine .................................... 5 
 
Figure 5.  An Interface for Defining a Particular Instance of an Inference Engine........................ 5 
 
Figure 6.  Performance of a single model run over time (i.e., repeated decision trails) as it learns 
the distance at which a given enemy population becomes threatening ........................................ 10 
 
Figure 7.  The effect of Variability on the Model’s Ability to Recognize the Distance at which 
the Enemy becomes Threatening .................................................................................................. 11 
 
Figure 8.  The graph depicts the results of a single model run where the distance threshold 
changed from 5 units to 2 half way through the run (with variability held constant)................... 12 
 
Figure 9.  This graph shows how increasing variability affects the models ability to discriminate 
new threshold values from old, and mirrors the performance of the model in stable environments, 
as depicted in Figure 7 .................................................................................................................. 13 
 
Figure 10.  Entity groupings according to an ACT-R model and human subjects ....................... 14 



 v

Preface 

The U.S. Army Natick Soldier Systems Center develops and applies modeling and 
simulation (M&S) technologies to evaluate new warfighter systems in terms of their ability to 
maximize individual combatant (IC) effectiveness and small-unit warfighting capabilities. 
Currently, the behavior models that control the warfighters in these M&S efforts are fairly 
simple, relying predominantly on behavior scripting and simple rules to produce actions. As a 
result, the simulated entity does not reflect much of the critical inference, situation awareness, 
and decision making required by actual soldiers operating in the combat environment and, as 
such, degrades the realism of the models and therefore any conclusions drawn from the 
simulation-based studies. For example, the Infantry Warrior Simulation (IWARS), a constructive 
simulator of dismounted infantry, provides pre-defined transition possibilities between simulated 
behaviors, but does not allow those transitions to happen based on the kinds of inferences that 
human soldiers actually use when understanding their situation and deciding what to do. 

This report discusses an effort to develop and implement an easy-to-use "Perceptual Editor" 
and to characterize the performance of two different mechanisms for transforming ground-truth 
to support these human-inference modeling needs.  The work was carried out by Micro Analysis 
and Design of Boulder, CO 80301 under contract number W911QY-06-C-0005, during the 
period November 2005 – May 2006 under the sponsorship of the U.S. Army Soldier Systems 
Center, Natick, MA 01760. 



 vi

Executive Summary 
Where human behavior is often thought of in terms of a perception-action cycle, rich with 
interdependencies and fuzzy boundaries between processes, the human behavior representations 
of a computer-generated force implement a one-way process where exact, unambiguous data 
drive discrete, monolithic models of decision-making.  The objective of this Phase I Small 
Business Innovation Research (SBIR) effort was to imbue human behavior representations with 
some of the complexities that characterize human perception and action.  In more specific terms, 
Micro Analysis and Design’s Phase I effort revolved around two related objectives.  The first 
was to design and prototype a “Perceptual Editor” that could be integrated within the Infantry 
Warrior Simulation (IWARS) environment and would allow a user to define different kinds of 
transformations between ground truth variables and agent-based perceptions.  The second was to 
investigate examples of the kinds of transformations that might be implemented using such an 
editor.  Progress toward both of these objectives is described in this report.   
 
Before developing the prototype “Perceptual Editor,” we had to explore two interrelated sets of 
issues.  The first had to do with identifying the appropriate levels of abstraction and aggregation 
within the IWARS environment where we might represent perceptual transformations.  For 
example, “perception” for the computer-generated entities in a synthetic environment like the 
IWARS occurs at a very high level of abstraction; the objects of perception are given by well-
defined data structures that characterize location, object type and other effective attributes.  Even 
though such representations are far removed from the vagaries of raw perception (e.g., feature 
extraction within the visual field), they still leave plenty of room for other kinds of 
transformations that can influence entity behavior (e.g., shifting judgments of threat versus 
distance on the basis of experience with a given enemy).  The issues here were to identify classes 
of entity perceptions that were not so abstract that they would obviate the need for perceptual 
transformation in the first place while, at the same time, supporting transformations at a 
sufficiently high level that they might still influence entity behavior.   The second set of issues 
had to do with identifying the specific software mechanisms that would allow such 
transformations to be specified and realized within the IWARS environment.  Here we needed to 
satisfy a set of requirements for software that was flexible and extensible and yet sufficiently 
self-contained to facilitate the verification and validation of the entity behaviors affected by such 
transformations while minimizing the modification to the IWARS code base itself.  Our 
approach to both sets of issues was to describe how a “Perceptual Editor” might dovetail with the 
IWARS “Condition Wizard” user interface.  In this way we not only fixed the level of 
abstraction at which perceptual transformation might be represented but we also located a natural 
software joint for integrating the perceptual editor into the IWARS code base. 
 
Development of the Perceptual Editor itself resulted in a functional, stand-alone prototype 
capable of: 

• Emulating input and output streams from a notional IWARS environment. 
• Supporting user-defined mappings between ground truth data (input to the Perceptual 

Editor) and entity perceptions (output to the IWARS) via a variety of different 
transformation mechanisms. 

• Supporting native calls to design and run-time environments for defining and 
implementing perceptual inferences.  Such environments might be a straightforward as 
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formula definitions within an Excel® spread sheet, to the development of a full-blown 
cognitive model within the ACT-R architecture. 

• Implementing an XML-file based communication between applications. 
 
The second major thrust of our Phase I effort was the investigation of cognitively-inspired 
mechanisms for producing perceptual transformations.  Whereas the Perceptual Editor provides 
an extensible framework for specifying and integrating such mechanisms within the IWARS, it is 
still up to the user to specify how a given transformation will occur.  We looked at two potential 
kinds of transformations, keeping in mind how easily each could be invoked from the perceptual 
editor.  First, we looked at how perceptions of distance to an enemy might be transformed into 
judgments of threat using an experienced-based model of an agent’s long-term memory.  These 
investigations yielded interesting results suggesting how agent perception in a simulated 
environment might be influenced by the statistical structure of the environment.  In particular, we 
saw preliminary indications of how an agent’s learned ability to judge threat is affected by 
increasing noise (i.e., statistical variability) in his environment and we outlined a path for a “poor 
man’s” representation of signal detection in such environments.  Second, we reviewed ongoing 
research in the ACT-R community for modeling an agent’s ability to group objects into more 
meaningful wholes.  In connection to the IWARS, the ability for an agent to infer the presence of 
fire teams, squads etc., from the perception of individual members would be useful.  The ACT-R 
models demonstrate good fits to human performance on similar tasks and the ACT-R 
architecture itself provides many validated parameters that can be tuned to produce individual 
differences.  In both cases, the cognitive mechanisms we considered provided ready 
representations of perceptual transformations potentially useful to the IWARS community.  
Moreover, these mechanisms demonstrate how the variability that characterizes so much of 
perception can be produced by straightforward representations of environments and individuals 
entities. 
 
Finally, from a methodological point of view, we note the extent to which the demand for 
modular software and tools that facilitate the verification and validations of perceptual inferences 
have shaped our effort.  Although we might speak of “integrating” perceptual inferences within 
the IWARS, the architecture we developed really supports more of an interleaving of inferences, 
in which both the design-time specification and run-time invocation of a perceptual inference 
would be handled by applications sitting outside of the IWARS.  In this way, we not only 
maintain the integrity of the respective code bases, but we also circumscribe very clearly at a 
conceptual level what the interleaved applications are responsible for delivering.
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AGENT-BASED MODELING OF DISMOUNTED INFANTRY 
THROUGH INCLUSION OF PERCEPTIONS, INFERENCES 

AND ASSOCIATIONS – PHASE I  
Introduction 
Where human behavior is often thought of in terms of a perception-action cycle, rich with 
interdependencies and fuzzy boundaries between processes, the human behavior representations 
of a computer generated force implement a one-way process where exact, unambiguous data 
drive discrete, monolithic models of decision making.  In the most general terms, the objective of 
this Phase I SBIR effort was to imbue human behavior representations with some of the 
complexities that characterize human perception and action.  In more specific terms, our Phase I 
effort revolved around two related efforts.  The first was to design and prototype a “Perceptual 
Editor” that could be integrated within the Infantry Warrior Simulation (IWARS) environment 
and would allow a user to define different kinds of transformations between ground truth 
variables and agent-based perceptions.  The second was to investigate examples of the kinds of 
transformations that might be implemented using such an editor.  We looked at an agent-based 
mechanism for both inferring intent from cues within a “noisy” (i.e., stochastic) environment and 
as means for representing individual difference in “signal detection” (i.e., variation between 
agents in discerning changes in a noisy cue).  In addition, we reviewed extant research on 
“projection” and perceptual grouping in which computational cognitive models were developed 
to reason about tasks in the same way that humans do.  This report will describe these efforts 
below. 

Developing a Prototype for a “Perceptual Editor” 
In preparing for our kick-off meeting we developed a rough outline for a “Perceptual Editor” that 
could be accessed by an IWARS simulation developer.  This outline took the form of a screen 
shot that we used to discuss the level of detail that would be needed for an IWARS user to define 
a mapping from simulation variables (i.e., ground truth) to perceptual cues via an inference 
mechanism. 
 

 
 
Moreover, during our kick-off meeting, we identified the Condition Wizard within the IWARS 
development environment as a possible integration point for a perceptual editor.  The Condition 
Wizard allows the user to define conditions that control tactical execution within the simulation.  
Essentially, this wizard allows the user to define the left-hand side (the condition portion) of an 
if-then rule.  
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The similarity of the look and feel between the two interfaces, though entirely unintentional, was 
a happy coincidence.  During our discussion at the kick-off meeting, it became clear that a 
Perceptual Editor would essentially expand the left-most columns of the Conditions Wizard 
thereby allowing the user to define rules that map variables to cues via inferences.  The 
inferences themselves might be simple if-then rules, or complex cognitive models of perception.  
The Perceptual Editor would allow the IWARS user to develop conditions for the conditions, so 
to speak, allowing for additional complexity at the “perceptual” level without having to modify 
behavioral libraries within the IWARS code base. 
 
Having fixed the conceptual level at which the Perceptual Editor would be deployed within the 
IWARS development environment, we then started thinking about software integration.  
Although the specifics would depend on collaboration with the IWARS development team 
during a Phase II effort, we verified that a file-based interaction would be workable.  
Accordingly, our prototype was designed to read in both a list of available simulation variables 
(i.e., ground-truth) as well as a list of corresponding “perceptions”—i.e., the Boolean conditions 
defined through the Conditions Wizard.  Depending on the complexity of the desired 
transformation from cue to “perception,” we determined that it would usually be necessary to 
output a file from the Perceptual Editor.  (We also considered that some transformation might be 
specified directly in the perceptual editor.)  That file would reflect the user’s initial mapping 
between variables and cues in a standard format to be read into whatever external application is 
being used to effect the transformation (e.g., allowing a user to define the instance-based long 
term memory structure that represents an agent’s experience associating cues to perceptions). 
 
The result of these discussions was a functioning software prototype for a Perceptual Editor.  The 
prototype software included the following executables (.exe) and dynamic-link libraries (.dll): 

 
NatickHarness.exe 

 NatickLibrary.dll 
 NatickInternalSupport.dll 
 EngineVariableAssociation.dll 
 ExcelEngineSetup.exe 
 ExcelEngineRuntime.exe 
 
The NatickHarness.exe implements a connection between an emulated IWARS environment and 
various external perceptual inference engines.  These functions are accessed by way of the top-
level dialog depicted in Figure 1.  This emulation is achieved using utilities that allow us to 
specify ground truth variables and “perceived” variables within IWARS as if the variables had 
been given in a formatted file (e.g., XML or CSV).  Similarly, an interface to an external 
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inference engine is provided for both authoring and execution—in this case a simple Excel 
spreadsheet.  Example mechanisms for launching the Engine/Variable association dialog, 
specifying Ground Truth values, and executing external simulation Engines are also provided. 
 

 
Figure 1.  The Top-Level User Interface for the Perceptual Editor 

 
The NatickLibrary.dll provides methods for launching the Engine/Variable association dialog, 
setting and retrieving ground truth and “perceived” variable values, specifying external 
simulation Engine definitions, and generating and using instances of engine/variable associations 
(Engine Instances). This library is used to abstract the internals of this implementation of XML 
or CSV communication from the NatickHarness.exe (or, conceptually, an IWARS-like tool). 
 
The NatickInternalSupport.dll provides classes and methods supporting XML description of 
ground truth variables, “perceived” variables, Engine Definitions and Engine Instances 
(associations between ground truth variables, output variables and a particular Engine type).  
These descriptions are given using the interfaces depicted in Figures 2 and 3. 
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Figure 2.  An Interface for Defining Ground Truth Variables (as they might be exported from the IWARS) 

 
Figure 3.  An Interface for Defining “Perceived” Variables (i.e., the results of the perceptual transformations 
that are mapped back onto variables within the IWARS) 

 
The EngineVariableAssociation.dll provides a dialog for associating ground truth and 
“perceived” variables with an Engine Definition to produce a specific Engine Instance (the 
dialog is depicted in Figure 4).  The Engine Instance can then be used to stimulate “perceived” 
variable states based on particular ground truth variable states.  The dialog offers facilities to call 
the Setup executable for the particular Engine Definition and prepare how the “perceived” 
variables will be stimulated based on ground truth (input) states. The dialog also allows the user 
to save the list of defined Engine Instances (they are saved as an XML file). 
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Figure 4.  An Interface for Associating Mappings to an Inference Engine 

In this case the “Inference” will be implemented by way of an excel spreadsheet using the 
Interface in Figure 5. 

 
Figure 5.  An Interface for Defining a Particular Instance of an Inference Engine   

In this case, by hitting “Set-up” the user opens an excel spreadsheet populated with the various 
ground truth (input) and “perceived” (output) variables to be associated using whatever formula 
the user defines. 

The ExcelEngineSetup.exe provides one example of how an Excel Engine might be used as an 
inference engine. It allows the user to set output states based on input states (and possibly other 
user defined elements) for any particular Excel Engine Instance. 
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A variety of XML files are used and produced by the Natick Tool. They are as follows: 
  

groundtruth.xml 
 outputvariable.xml 
 enginedef.xml 
 engineInstances.xml 
 
Each file contains a description of the area indicated by the name of the file (e.g., 
groundtruth.xml describes the list of available ground truth variables available in the Natick 
Harness, or, conceptually, in IWARS ). 
 
This is an example of a ground truth XML file: 

 
<?xml version="1.0" encoding="utf-8" ?>  
<GroundTruthVariables> 
 

<GroundTruthVariable Name="ObjectType" Type="nv_enum" CurrentValue="" 
AllowedValues="Armor,Infantry" />  
 

   <GroundTruthVariable Name="ObjectSize" Type="nv_enum" CurrentValue="" 
AllowedValues="Small,Medium,Large" />  

 
   <GroundTruthVariable Name="ObjectDistance" Type="nv_integer" CurrentValue="" 

AllowedValues="0,1,2,3,4,5,6,7,8,9,10" />  
 

</GroundTruthVariables> 
 
Each ground truth variable has attributes for its name, type, current value and allowed values. 
The name can be a text string and should be suitable for display to a user. The type can be one 
of: 
 nv_enum 
 nv_integer 
 nv_boolean 
 nv_real 
 nv_string 
 
The current value is a string representation of the current value of the described variable (it is 
optional and may be missing or may be an empty string to indicate “no current value”). The 
allowed values are a comma separated string of values the variable is allowed to take (it is also 
optional and may be missing or may be an empty string to indicate “no limitations within 
variable type”).  Note that, currently, no validity checks are done on current value to ensure it 
falls within the allowed values.  There is also no checking done to ensure that enumerations have 
a list of allowed values. 
 
The outputvariable.xml file, which describes the “perceived” variables, follows an identical 
format to that of the ground truth file. 
 
This is an example of an engine definition XML file: 
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<?xml version="1.0" encoding="utf-8" ?>  

   <EngineDefinitions> 
   <EngineDefinition Name="RPD Engine" IOPref="xml" SetupPath="" RuntimePath=”” />  
   
 <EngineDefinition Name="ACT-R Engine" IOPref="xml" SetupPath="" RuntimePath=”” />  
 
   <EngineDefinition Name="ExcelEngine" IOPref="xml" 

SetupPath=".\ExcelEngineSetup.exe" RuntimePath=".\ExcelEngineRuntime.exe" />  
 

</EngineDefinitions> 
 
The name can be a text string and should be suitable for display to a user. The IOPref indicates 
the file type the engine uses for communication and must be either XML or CSV in the Natick 
Harness interface.  This could be expanded to provide other forms of communication between 
the Natick Harness (or, conceptually, IWARS) and the various simulation engines.  Currently, 
the harness only supports XML file communication. 
 
The SetupPath and RuntimePath are (possibly relative) paths to the executable(s) responsible for 
engine variable setup and runtime stimulation of variables. 
 
This is an example of an engine instance XML file: 

 
<?xml version="1.0" encoding="utf-8" ?>  
<EngineInstances> 

<EngineInstance Name="ThreatAssesment" Type="RPD Engine" CallingSequence=""> 
<Inputs> 

     <Input Name="ObjectDistance" Type="nv_integer" CurrentValue="" 
AllowedValues="0,1,2,3,4,5,6,7,8,9,10" />  

    </Inputs> 
<Outputs> 

     <Output Name="IsHostile" Type="nv_boolean" CurrentValue="" 
AllowedValues="" />  

    </Outputs> 
  </EngineInstance> 

 
<EngineInstance Name="ThreatAssesment" Type="ACT-R Engine" CallingSequence=""> 

<Inputs> 
     <Input Name="ObjectDistance" Type="nv_integer" CurrentValue="" 

AllowedValues="0,1,2,3,4,5,6,7,8,9,10" />  
    </Inputs> 

<Outputs> 
     <Output Name="IsHostile" Type="nv_boolean" CurrentValue="" 

AllowedValues="" />  
    </Outputs> 

</EngineInstance> 
 

<EngineInstance Name="ThreatAssesment" Type="ExcelEngine" 
CallingSequence=".\ThreatAssesment_ExcelEngine.xls"> 

<Inputs> 
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<Input Name="ObjectDistance" Type="nv_integer" CurrentValue="" 
AllowedValues="0,1,2,3,4,5,6,7,8,9,10" />  

    </Inputs> 
<Outputs> 

     <Output Name="IsHostile" Type="nv_boolean" CurrentValue="" 
AllowedValues="" />  

    </Outputs> 
  </EngineInstance> 
</EngineInstances> 

 
The name can be a text string and should be suitable for display to a user. The type must be one 
of the names listed in the engine definitions in the enginedef.xml file.  This is not enforced in the 
XML file, but is enforced in the Natick Harness (or, actually, the Engine/Variable association 
.dll; only defined engines are available for instantiation). 
 
The calling sequence contains information specific to how the runtime inference engine should 
be called (e.g., for the ExcelEngine, the ExcelEngineRuntime is called with the Excel file 
containing the relevant formulas (i.e., “perceptual inferences”) and variable values as 
“ExcelEngineRuntime.exe –f<calling sequence string>”; this same mechanism can be used for 
other inference engine types).  
 
The Inputs and Outputs are reproductions of the variable information associated with this engine 
type during Engine/Variable association. The format of this data is identical to that described in 
the ground truth XML file description. 
 
Currently, the only calling sequence supported is “<Engine Runtime Executable> -f<File 
generated during Engine Setup>”. This could be modified to support many other possible calling 
sequences. 

Exploring Perceptual “Inferences” 
The Perceptual Editor provides an extensible framework for defining and integrating perceptual 
inferences within the IWARS.  Although it places constraints on the manner in which such 
inferences are integrated (by standardizing the input and output between the IWARS and an 
inference engine), the Perceptual Editor does not affect the inferences themselves.  That is, even 
given the input and output from such an inference engine, it is still up to the user to specify 
whatever mechanism will be required to perform the inference.  At a minimum, a user might 
simply describe a mathematical function that relates cues to perceptions, for instances, using an 
Excel spreadsheet as in the previous example.  However, there are also cases where the user 
might want to take advantage of inferences implicit in the more complex workings of a cognitive 
model.  (Even if all computational models could be regarded as computing some function, it is 
often more convenient to view the transformation as mediated by some theoretical constructs 
rather than as a disembodied mathematical function). 
 
Our goal in Phase I was not to canvas all the possible cognitive mechanisms for perceptual 
inference, nor was it to advocate a particular cognitive architecture for the job.  Instead, we 
identified a few perceptual inferences with obvious relevance to infantry behavior and explored 
how they might be realized using familiar approaches (familiar to us, at least).  We had several 
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goals in mind for this exercise.  The first goal was to provide concrete examples of what we 
mean by the term “perceptual inference” and to demonstrate by way of these examples how the 
fidelity of a simulation environment like the IWARS might be extended.  The second goal was to 
mark out a clear division of labor between the perceptual and the behavioral and determine the 
extent to which this division could be supported within the Perceptual Editor.  Finally, the third 
goal was to work through an (almost) end-to-end example of specifying a perceptual inference 
with an eye toward a use case and, eventually, a methodology for integrating such inferences.  
We first describe the inferences themselves and then we discuss how well we met our three goals 
and the other overarching goals of this project. 
 

An Instance-Based Perception of Distance* 
The representation of distance is bedrock in any computer simulation of military activity, and it 
figures prominently in determining entity behaviors as both physical objects (e.g., a target that 
can be hit at some distance with a given weapon) and as agents (e.g., a commander who must 
decide whether another entity poses a threat).  Apart from the “physics” of the simulation, where 
distance calculations are as exact as they can be, the representation of distance as a driver in 
human behavior representations should be far more subjective and context-sensitive than it 
currently is.  For example, in reality, a fighter pilot has a far different sense of distance than a 
dismounted infantry soldier.  While this difference might be reflected in a simulation by using 
different agent models (pilot vs. dismounted soldier), there are cases in which the perceptions of 
even a single agent might be context sensitive.  For example, an individual dismounted soldier 
might have a different sense of distance depending on whether he is engaging the enemy in open 
terrain or, instead, in the complex interior spaces of a MOUT environment.  In such cases, crisp 
rules that transform distance given by some fixed metric (e.g., meters) are not likely to reflect 
these different, context sensitive perceptions of distance. 
 
To explore an alternative to such rule-based approaches, we developed a deliberately simplistic 
stand-alone model that transforms distance, represented as ground truth, into a perception of 
threat by way of an instance-based agent model developed at MA&D (see Warwick et al. 2001 
for details about the instance-based architecture).  In this case, we actually specified two 
transformations, one explicitly and the other implicitly.  The first transformation was the explicit 
“binning” of a real-valued distance variable into a set of discrete values that would be presented 
to the agent.  At this point it would have been possible to produce a variety of mathematical 
transformations between actual and “perceived” distance by using clever mappings (e.g., picking 
non-uniform bin sizes).  Instead, we took a straightforward approach in which we mapped real-
valued ranges of equal “width” onto enumerated values representing distance.  The second 
transformation occurred implicitly within the instance-based architecture as the agent learned the 
distance at which the enemy would become threatening.  This point is crucial; rather than 
represent this threshold as a crisp rule internal to the agent (e.g., if distance < 5, then threat = 
high), the transformation from distance to threat was the product of an environment that was both 
variable and noisy.  Thus the threshold at which an enemy would become threatening would 

                                                 
* The executable models described in this section are available for download and inspection at: 
http://www.maad.com/index.pl/brims_models 
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change from simulation to simulation (or even within a simulation), while the threshold itself 
represented only the average distance at which the enemy was likely to become threatening. 
 
During a simulation run, the agent would “see” an enemy at some distance and then “decide” 
whether the enemy was threatening, receive feedback about the correctness of the decision and 
then repeat with a new enemy at another distance. In this way, the agent-based perception of 
threat amounted to an experience-based estimate of the actual distance at which the enemy would 
become threatening.  Because that threshold was defined according to a distribution type, with a 
mean and standard deviation, distance as a cue could be more or less informative (i.e., predictive 
of enemy threat).  Note also that the threshold value itself could change, so that past experience 
with one “population” of enemy might adversely influence future perception.  To demonstrate 
these vagaries of perception, we ran the model under a variety of circumstances (e.g., different 
mean values for the distance at which a given enemy “population” becomes threatening, different 
amounts of variability about those mean values, etc.).  Although we have yet to summarize data 
across a set of models, the results of the individual model runs depicted (Figures 6 and 7) 
suggested that the agent-based approach is capable of supporting a more nuanced perception of 
distance. 

Distance Model Success over Time
Threshold = 5; Variability = 1.0 
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Figure 6.  Performance of a single model run over time (i.e., repeated decision trails) as it learns the distance 
at which a given enemy population becomes threatening   

“Number Correct” reflects the correct identification of both threatening and non-threatening 
enemy. 
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Distance Model: Percent Correct Decisions
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Figure 7.  The effect of Variability on the Model’s Ability to Recognize the Distance at which the Enemy 
becomes Threatening 

Note that as variability about the threshold increases, distance becomes less predictive as a cue 
and the model’s performance diminishes. 

Although seemingly straightforward, this experienced-based transformation of distance 
introduces potentially interesting and useful interactions in agent-based perception.  Chief among 
these is that the transformation itself is a reflection of the statistical structure of a (possibly noisy 
or unstable) environment rather than the strict application of a cut-off rule that has been specified 
a-priori.  Thus the agent’s perception reflects as much uncertainty as is warranted by the 
environment.  In those cases where variability in the enemy behavior is low, the agent’s 
perception is relatively certain (as reflected in the model’s performance correctly perceiving the 
enemy as threatening or not); in those cases where the variability is high, the agent’s perception 
is less certain.  Moreover, a single agent model can be deployed under any of these conditions 
and will adapt to the structure of the environment.  That is, the agent’s perceptions are truly a 
product of the environment rather than the result of fine-tuning internal model parameters. In 
those cases where it is important to simulate adaptive behavior, this level of fidelity in the 
representation of agent perception would not be easily achieved even using a fuzzy rule.   

Toward an Instance-Based Model of Signal Detection*  
In addition to providing a potentially useful level of adaptive behavior, this experienced-based 
model of distance perception led us to consider how the same models might be used to represent 
an agent’s ability to discriminate subtle changes in a given cue.  Our sense of “signal detection” 
here is a bit metaphorical, but the idea is that given a “noisy” cue (like the distance cue described 
previously), some agents will be able to discriminate meaningful swings in a cue’s value from 
those that are merely the product of random variability.  Although we approached this problem 

                                                 
* The executable models described in this section are available for download, inspection at: 
http://www.maad.com/index.pl/brims_models 
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using the experienced-based models described earlier, we were not so much interested in the fact 
that such models are adaptive but, rather, that different learning regimens might ultimately lead 
to “individual differences” among agent models to discriminate the values of noisy cues.  As 
before, we were trying to exploit the potentially subtle interactions here between the statistical 
structure of the environment and the parameters that affect the agent’s learning performance.   
 
To determine whether we could represent such individual differences, we first looked at a 
model’s ability to recognize when a threshold had changed during a simulation (e.g., enemy that 
were threatening only at 5 units are now threatening at 2 units).  Of course, the real question is 
one of how small a change can the model detect, which in turn, depends on the variability of the 
threshold.  Again, we have yet to summarize data across a set of models, but the results of the 
individual model runs depicted suggest that the models are sensitive to changes in threshold 
values (Figure 8) and that the interaction between the size of the change and the amount of 
variability in the cue (i.e., signal to noise) is reflected in a plausible way on the model’s 
performance (Figure 9). 
 
Although these results are preliminary and will require additional analysis before we can be sure 
they are robust, they are suggestive of the kinds of agent-based performance we’d like to 
engender with a perceptual inference. The perception of even a ubiquitous cue like distance is 
neither monolithic, nor uniform, but depends on the environment in which it is presented.  In a 
real sense, the meaning of a cue is to be found in the environment and not in the agent’s head, so 
to speak, in the form of a hard and fast rule.  At the same time, we’re still interested in 
determining whether we can represent those differences inside the head that influence how well 
an agent is able to attune his perceptions to a noisy environment.  We didn’t complete those 
studies during our Phase I effort, but we are hopeful that straightforward parameter variations in 
the instance-based agent model will allow us to generate a variety of different performance 
curves of the kind depicted in Figure 9.  We plan to pursue this work under another ongoing 
research contract. 

Distance Model:  Success over time with changing threshold
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Figure 8.  The graph depicts the results of a single model run where the distance threshold changed from 5 
units to 2 half way through the run (with variability held constant) 
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The model falters after the switch—after consistent, near perfect performance, performance 
becomes volatile and diminishes to near chance levels.  But the model is ultimately able to adapt 
to the change, returning to more consistent, albeit slightly less than perfect performance.  This 
suggests that the new threshold has, in fact, been recognized (otherwise, we’d expect 
performance to remain low).  

 

Distance Model: Percent Correct Decisions
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Figure 9.  This graph shows how increasing variability affects the models ability to discriminate new 
threshold values from old, and mirrors the performance of the model in stable environments, as depicted in 
Figure 7 

As variability (i.e., noise) increases the model’s performance during any one simulation 
diminishes, suggesting that the change in threshold values has been lost in the noise. 

Using ACT-R as a Perceptual Inference Engine 
In addition to our in-house familiarity with instance-based agent models, we also exploited in-
house expertise with the ACT-R cognitive architecture (Anderson and Lebiere 1998) to explore 
additional kinds of perceptual inference.  While ACT-R has implemented a theory of perception 
by way of its perceptual motor module, the theory is couched at a lower-level of analysis.  For 
example, the perceptual motor module is used to represent perceptual “bottlenecks” in which 
various “channels” of perception compete for attention and also to represent the agent’s ability to 
identify and remember locations within the visual field.  Our interest was at a higher, cognitive 
level that is better suited to describing how “meaning” might be inferred from the raw perception 
of cues.  Thus we focused our informal discussions on two general sorts of mechanisms:  the 
“mathematical” ability to project cue values and the ability to aggregate individual entities into 
groups. 
 
The idea for a mathematical approach to perceptual inference followed from earlier independent 
efforts to develop cognitive models of a human interpreting a graph (e.g., a graph of supply vs. 
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demand).  In that domain, the human (and, hence, the cognitive model) must be able to project 
trends, identify intercepts and intersection points in order to understand the graph.  Although 
much of this depends on the interpretation of the graph qua image, the cognitive modes also used 
higher-level representations of the mathematics depicted in the graph in order to extract 
“meaning.”  For example, projecting past the intersection point of a supply and demand graph 
allows the agent to infer how an increase in price might affect demand.  We discussed whether a 
similar approach could be taken in the context of perceptual inference where, for example, the 
future location of an object might be inferred from a cue giving current location and another cue 
indicating velocity.  Couched at this level, a perception of location would more directly support 
complex inferences about relative location of a target ahead or behind (rather than constantly re-
calculating relative position anew).  Our preliminary discussions suggested that such an 
integration through our Perceptual Editor would be possible.  More specifically, we canvassed 
the kinds of ground truth information that would be required to support such reasoning and we 
considered whether the perceptions so transformed could be mapped onto plausible variables 
within a military simulation environment like IWARS.   
 
We also discussed how ACT-R might be used to infer groups given cues about the locations of 
individual entities.  This mode of inference has more direct bearing on the kinds of inference that 
could be realized in the simulation of dismounted infantry.  For example, the perception of a 
single entity will have different meaning to an agent depending on whether that entity happens to 
be a lieutenant, from which the presence of an entire platoon might be inferred, or a single 
member of a two-man rifle team.  At a more basic level, and without invoking domain 
knowledge about military organization, the perception of multiple scattered entities will have 
different meanings depending on whether the presence of a single, dispersed group is inferred or, 
alternatively, whether the presence of multiple, partially represented groups is inferred.  In either 
case, the perception of ground truth—i.e., individual entities and their locations—is transformed 
into more meaningful terms—i.e., groups and their centers of mass.  Best and Gunzelmann 
(2005) describe a cognitive model that performs exactly these kinds of transformations; given 
inter-entity distances, these models aggregate entities to groups in much the same way that 
humans do (see Figure 10). 
 

 
Figure 10.  Entity groupings according to an ACT-R model and human subjects 

Each pane depicts a set of entities to be grouped; the leftmost pane shows how entities were 
grouped by an ACT-R model, (with center of group mass indicated by the red dots); the middle 
and right pane show how the same entities were grouped by two different human subjects. 
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The model Best and Gunzelmann describe can be parameterized to produce individual 
differences in grouping strategy and, moreover, could be extended to reflect the influence of 
domain knowledge on perception of groups.   Although we see a wide variety of potential 
applications for such inferences in an agent-based model, our preliminary discussions focused on 
the basic conceptual issues entailed by the integration of perceptual grouping algorithms through 
our Perceptual Editor (e.g., whether we could extract the right kinds of cues and return the 
“meaningful” results of an inference).  Again, the integration required at this conceptual level 
would be relatively straightforward. 
 
Finally, we talked about what would be required to support a native connection from the 
Perceptual Editor to an ACT-R modeling environment, both for specification of the cognitive 
transformation and the run-time connection to an inference engine.  Though less interesting from 
a theoretical point of view, integration at this level would require some significant software 
engineering.  Whereas the connection we implemented between the Perceptual Editor and an 
Excel spread sheet was straightforward, the ACT-R modeling environment and run-time engine 
are currently implemented in Lisp.  This makes intercommunication to Windows environments 
either expensive, or tedious or both.  Nevertheless, one of the design considerations behind our 
Perceptual Editor was the specification of a fairly generic file-based communications between 
the editor and the inference engine; this would serve to mitigate some of the integration risk. 

Recommendations and Conclusions 
As we indicated previously, the motivations for exploring specific inferences (i.e., distance 
perceptions and entity groupings) were threefold.  First, we wanted concrete examples of what it 
might mean to specify a perceptual inference.  Second, we wanted to define a clear division of 
labor between such inferences and the other kinds of agent behaviors in a simulation.  Third, we 
wanted to work toward a use case both to identify gaps in our approach and to make sure that it 
was addressing some of the larger methodological concerns of the IWARS community.  As it 
happens, these three motivations turned out to be somewhat interdependent.  
 
Having a concrete example of a perceptual inference on the table is useful for all sorts of reasons, 
not the least of which is that the example serves to deflate rhetoric and disambiguate vocabulary.  
But on a deeper level, the examples allowed us to identify in fairly specific terms the input a 
Perceptual Editor would need to receive from the IWARS and the output it would return in order 
to effect a particular inference.  (This was all the more important given that we were emulating 
data streams to and from the IWARS as we developed our prototype editor and we had to decide 
what to include in those emulated data streams.)  So, for example, in discussing what it would 
mean to infer threat from distance, we identified distance-to-enemy as a necessary input to a 
perceptual inference, and a binary judgment of threat, no-threat as the output.  Moreover, having 
pinned down the input and output, we could then focus on the various kinds of perceptual 
inference that could be specified for a single input-output pair.  For example, using an Excel 
spread sheet to define a mathematical relationship between distance and threat yielded a 
straightforward rule-based view of perceptual inference, whereas using a naturalistic model 
allowed us to explore more subtle, learned behaviors.  This is not to argue for one view of 
distance perception over the other but merely to point out that both would be possible using our 
Perceptual Editor.  Likewise, the ACT-R models of grouping suggest another potential avenue 
for representing a perceptual inference.  But in this case, the concrete example also exposed 
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specific software requirements, namely, the ability to integrated Lisp-based tools for both 
defining and running an ACR-R cognitive model within a Windows application (requirements 
we discussed but did not formally specify during Phase I).  Ultimately, these concrete examples 
reveal the requirements for supporting an end-to-end process where an IWARS user would open 
the Perceptual Editor and specify both the input variables and inference mechanisms while 
minimizing the effort needed to set up the native environment for whatever mechanism is being 
invoked. 
 
Although this kind of user support would lessen the burden on the IWARS user hoping to model 
perceptual inference using different mechanisms, it doesn’t address an important conceptual 
question.   Consider again our example of inferring threat from distance.  Although we have used 
phrases like “transforming distance,” and “inferring threat” as if they were synonymous, there is 
still a real question about the division of labor between perception and inference in the 
representation of an agent’s behavior.  Indeed, once we have inferred threat, it’s a small step to 
action—so why not skip the middle step and simple act directly on the perception and implement 
the whole process in a single behavior library?  For us, the answer is given essentially by fiat, 
insofar as we have designed the Perceptual Editor to hang off the Conditions Wizard rather than 
be hard-coded into the IWARS.  Still, the conceptual questions remains, and we often found 
ourselves thinking about additional sorts of perceptual transformations that were not so easily 
disentangled from the actions they supported (threat assessment is a prime example).  
Conversely, we also found ourselves thinking about how ground truth might be uniformly 
transformed independent of any particular agent action or inference engine.  For example, 
representing the limits of visual acuity would also serve to transform ground truth variables into 
more realistic perceptions, but such a transformation would apply across all agent behaviors.  
This led us to propose as part of a Phase II effort, additional functionality within the Perceptual 
Editor to allow a user to link directly to a handful of empirically derived models of sensory 
acuity.  This impulse to link some transformations to specific behaviors and others to more 
global mechanisms only serves to blur the division of labor between the perception and inference 
on which we predicated the design of our Perceptual Editor. 
 
Nevertheless, in confronting this fact, we did come to a deeper appreciation of some of the 
methodological concerns that were presented to us at the outset of the effort.  Two concerns in 
particular stood out: that the integration of a perceptual inference within the IWARS should  
entail the least modification to the IWARS code base as possible and that the integration of any 
one inference should have a clear audit trail.  We responded to these concerns by developing a 
modular approach built around the standards that would emerge from linking inferences by way 
of a single interface.  As we indicated previously, we envisioned the Perceptual Editor as an 
adjunct component to the IWARS.  Although we spoke of “integrating” perceptual inferences, 
the architecture we proposed really supports more of an interleaving of inferences, in which both 
the design-time specification and run-time invocation of a perceptual inference would be handled 
by applications sitting outside of the IWARS.  Moreover, the brokering of design-time and run-
time interactions would be mediated by specific file formats.  In this way, we not only maintain 
the integrity of the respective code bases, but we also circumscribe very clearly at a conceptual 
level what the interleaved applications are responsible for delivering.  This combination of 
interleaved applications and well defined input-output requirements supports a high degree of 
modularity while making it easier to inspect and verify the specifications for a particular 
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transformation in the very development environment used to specify the transformation.  So, 
while this doesn’t answer the conceptual question about the principled division of labor between 
the perceptual and inferential, it does make it much easier to isolate whatever it is that we happen 
to treat as perceptual by insulating the IWARS code from the mechanisms we use to define the 
transformation.  Moreover, should we come to re-draw the line between the perceptual and 
inferential, our approach is by its nature easily extensible. 
 
Our Phase I approach was focused on the development of software framework for specifying 
perceptual inferences.  We also investigated specific inferences to demonstrate that even 
seemingly straightforward perceptions like distance or entity count might be represented in very 
different ways.  Indeed, by supporting external representations of such inferences it is possible to 
choose the fidelity of representation (e.g., using a rule-based approach versus the instantiation of 
a cognitive model) and, hence, to bring a variety of different factors to bear on perceptual 
inference (e.g., influence of environmental factors, individual differences, principled variability 
etc)  But, as with any tool, our framework is by itself inert, so the work remains to investigate 
additional inferences and identify those that are likely to have high payoff for the IWARS 
simulation community.  That said, we believe our Phase I effort demonstrates the extent to which 
that research would be facilitated by adopting the proper framework. 
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